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Fidelity of Quantum Teleportation for Single-Mode Squeezed State Light �
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The �delity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general

theory of quantum-mechanical measuremennt in the Schr�odinger picture. It is shown that the criterion for the

nonclassical state teleportation is di�erent from that for coherent state. F = 1=2 is no longer the rigorous bound-

ary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement

of an Einstein{Podolsky{Rosen (EPR) beam used for teleportation and the parameters of the system are given,

the �delity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the

�delity is, and the lower the classical limitation of �delity is. The dependence of the optimum gain for teleporting

a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important

references for designing experimental systems of teleporting a non-classical state and judging the quality of the

teleported quantum state.

PACS: 03. 67. Hk, 42. 50. Dv

Quantum teleportation is a method by which

quantum information encoded in a quantum state can

be successfully retrieved at a distant location. It repre-

sents the basic building block of future quantum com-

munication networks between parties and has poten-

tial applications in quantum computing[1] and quan-

tum information manipulation.[2]

Quantum teleportation was �rstly proposed for

single particles,[3] the quantum teleportation of sin-

gle photon polarization states was also experimen-

tally demonstrated.[4;5] Recently, it has been extended

to the coherent state of continuous electromagnetic

�elds[6;7] and has been demonstrated.[8] For an ideal

teleportation, the output state emerging at the receiv-

ing station should perfectly mimics the original un-

known input state. However for any real situation, the

Einstein{Podolsky{Rosen (EPR) entanglement used

as quantum channel of teleportation is imperfect, be-

cause the perfect entanglement requires the perfect

squeezing which corresponds to an in�nite amount of

energy of the light �eld, that is, the perfect teleporta-

tion is impossible to be obtained in experiments, the

�delity is used to evaluate the success of the quantum

teleportation process. Recently various discussions on

this subject have appeared.[9�11] Up to now, most of

the work are focused on the case of coherent input

states which are very close to classical states. When

nonclassical states of light are used for communica-

tion, the channel capacity and the signal-to-noise ra-

tio can be improved,[12] thus it is important to pay

attention to the teleportation of original nonclassical

states.[13] The discussions on the entanglement swap-

ping for discrete variables[14�18] and continuous elec-

tromagnetic �eld[19�21] �rstly enter into the investi-

gation for teleporting nonclassical features of quan-

tum states. The transfer of nonclassical features in

quantum teleportation of nonclassical states, such as

the squeezed vacuum and fock state has been stud-

ied in the case that the quantum channel is in
uenced

by a thermal environment and the normalized classi-

cal gain of the system is designated to the maximum

value of 1.[22] In fact, the unit gain can only be used

for maximizing the �delity for coherent-state telepor-

tation with an amplitude much larger than one.[23]

The nonclassical properties of the teleported quan-

tum state which originally has nonclassical proper-

ties were theoretically discussed.[24] Very recently, the

squeezed-state teleportation was reported and the cor-

responding �delity for the squeezed thermal state was

given to evaluate the eÆciency of teleportation of non-

classical state.[25]

In this Letter, we calculate the �delity of telepor-

tation for squeezed states based on the general theory

of quantum-mechanic measurement in the Schr�odinger

picture. The obtained results show that the �delity

and the classical boundary not only depend on the

EPR entanglement and also the squeezing of the input

squeezed state. The criteria di�erences between the

teleportation of coherent states and squeezed states

are discussed. Our calculations indicate that it is not

appropriate applying the criteria derived from the co-

herent state to the teleportation of squeezed states. It

has been theoretically demonstrated that the higher

EPR entanglement has to be required for teleporting

a squeezed state with the same �delity with respect

to a coherent state. We also calculate the optimum

gain for teleporting a squeezed vacuum state. Our

results provide useful references for designing the sys-

tem teleporting squeezed states and better standards

for estimating the quality of �nished teleportation for
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squeezed states.

The EPR entangled state used in the proposed

teleportation scheme for continuous variables is a two-

mode squeezed vacuum state which can be expanded

in a fock state basis,[26]
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where the indices 1 and 2 denote the two modes of

the squeezed state; � (0 < � < 1) indicates the degree

of EPR entanglement; � = 0 represents the classical

limit without any EPR entanglement. At the limit of

in�nite squeezing �! 1, the two-mode squeezed state

approaches a maximally entangled state for quadra-

ture phase amplitudes X and Y ,[27;28] thus it is the

analogue of the ideal EPR beam with perfect entan-

glements between quadrature phase amplitudes.

For the teleportation of an arbitrary pure state

j	iin, the density operator of the unknown input state
takes the form:

�̂in = j	iin inh	 j: (2)

Using the same discussion[29] as described in

Ref. [29], the input state after experiencing all of the

processes of teleportation is transformed into
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and the displacement operator
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where g represents a normalized classical gain for the

transformation from classical measured in�nitesimal

values X and Y to complex �eld amplitudes X + iY .

In the limit of in�nite squeezing � = 1 and unity

classical transformation gain g = 1, we can obtain the

density matrix of the conditional output state of the

other half of EPR pair:

�̂
out
2 = �̂in: (4)

It is clear that under this limit the input unknown

pure quantum state can be successfully teleported to

the receiving station and can be perfectly retrieved by

the other half of the EPR beam.

In fact the maximally entangled squeezed state is

unphysical since it needs an in�nite amount of en-

ergy of the light �eld. For a real teleportation system

with �nite entanglement the input and output states

are not exactly the same and only partly overlapped.

Considering the real case of � < 1 and g 6= 1, the out-

put state expressed by Eq. (3) behaves like a mixture

of the unnormalized density matrix elements. The av-

erage density matrix of output state is
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The �delity for evaluating the eÆciency of realistic-

and thus imperfect- teleportation of quantum states

is given from the initial de�nition:[30]

F =in h	 j�̂T j	iin . (6)

Substituting Eq.(5) into Eq. (6) the �delity is written

in the following form:
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where � and 
 are the coherent amplitudes of coherent

state bases j�i and j
i.
For an input single-mode squeezed state of light

the wave function is expressed by

j	iin = j�; �i = Ŝ(�)j�i; (8)

where Ŝ(�) = e
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in) is the squeezing oper-

ator, � = r0e
i'0 is the squeezing parameter with mod-

ulus r0 and argument '0. The exponential function

of operator Ŝ(�) is derived from the operator ordering

theorem:
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setting '0 = 0 for simplicity and without the loss of

generality, Eq. (8) is expanded to
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The average �delity for an input single-mode

squeezed state is obtained by integrating out the pa-

rameters �, 
, X and Y in Eq. (7),
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If we take r0 = 0, i.e., when a coherent state is

teleported, Eq.(12) becomes

F =
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2
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which is the same with the �delity for coherent state

teleportation given in Ref. [23].

In the case of large coherent amplitude (j�j2 � 0),

it is found from Eq. (12) that the maximum �delity is

obtained at the unit gain g = 1 independent of squeez-

ing r0 and EPR entanglement �. Therefore for the

teleportation of single-mode squeezed coherent state

with large coherent amplitude, the classical gain of

the unit should always be taken and the maximum

�delity is given

F =(1 + �)(2 cosh2 r0)
�1[(1� �

2 tanh2 r0)

� (1 + tanh r0)(1� � tanh r0

+ �(1� �) tanh2 r0)]
�1=2

: (14)

Fig. 1 shows the dependence of the �delity given in

Eq. (14) on the modulus of the squeezing parameter

of the teleported squeezed state with respect to the

designated parameters (�) of the EPR entanglement.

For the ideal case of � ! 1 and g = 1, the quantum

�delity equals to 1 (curve e in Fig. 1) and it no longer

depends on the squeezing of the input state as men-

tioned above. However, for imperfect entanglement

(0 < � < 1), the �delity drops when the squeezing

(r0) of input squeezed state increases for a given EPR

entanglement [curves d � a, � = 0:9, 0:6, 0:3, 0]. The

results tell us that the single-mode squeezed state with

higher squeezing is more diÆcult to be teleported with

high �delity. Compared to the teleportation of coher-

ent states the higher entanglement of EPR is required.

That is because the quantum information included in

the squeezed state with higher squeezing is more than

that with lower squeezing, thus the high nonlocal en-

tanglement has to be used for teleporting the more

quantum information. The curve a in Fig. 1 repre-

sents the case without entanglement (� = 0), which

indicates the boundary Fclass between the classical and

quantum domains for the teleportation of squeezed co-

herent state.

Fclass =
1

2 cosh2 r0
p
(1 + tanh r0)

: (15)

It is obvious that both the �delity and the bound-

ary for the teleportation of the single-mode squeezed

coherent state of light are dependent on the squeez-

ing r0 of the input unknown squeezed state. For a

given entanglement �, the higher the squeezing is, the

smaller the �delity is and the lower the boundary is.

Only when r0 = 0, the �delity of curve a equals 1/2

which is just the classical boundary obtained for the

coherent input states.[9]

Fig. 1. The �delity F versus the squeezing of the input
squeezed state for di�erent parameters of quantum corre-
lation between EPR pair; curve a, � = 0, i.e. classical
limit for EPR entanglement; curve b, � = 0:3; curve c,
� = 0:6; curve d, � = 0:9; curve e, � = 1, i.e. ideal EPR
pair.

In the above analysis, we consider the teleporta-

tion of squeezed coherent state (� 6= 0) in which the

unit gain is always corresponding to the optimal �-

delity. However, for the teleportation of a squeezed

vacuum state (� = 0), our calculation shows that the

maximal �delity is obtained at g < 1. Taking � = 0

we numerically solved Eq. (12) and obtained the func-

tion of the �delity versus g at r0 = 0:3 and � = 0, 0:3,

0:6 and 0:8 [curves a � d in Fig. 2]. The peaks of the

curves appear at the gain of g < 1, this means that

the maximum �delity corresponds to g 6= 1 and when

� also increases the optimal gain increases. Therefore

in implementing teleportation experiment the receiver
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should adjust the classical gain of the system care-

fully to reach the optimal �delity for each given EPR

source.

Fig. 2. The �delity F versus the classical gain with the
input squeezed vacuum state with the squeezing r0 = 0:3
and the di�erent entanglement of EPR. Curve a, � = 0;
Curve b, � = 0:3; curve c, � = 0:6; curve d, � = 0:8.

The �delity and classical boundary for the quan-

tum teleportation of squeezed states have been ana-

lytically calculated based on the theory of quantum-

mechanical measurement in the Schr�odinger picture

and the initial de�nition of �delity. The obtained

results indicate that the �delities and the classical

boundaries of the squeezed state teleportation and the

coherent state teleportation are di�erent. Therefore,

it is not appropriate to apply the criteria derived from

the coherent state in the teleportation of the squeezed

state. Figure 1 shows that the �delity and the classical

boundary of a teleported squeezed state depend on the

squeezing of the input state. Although the teleported

state is an unknown state for the sender, when the

receiver has retrieved the teleported state he should

know what it is. If a squeezed state is retrieved, the

receiver should not evaluate the quality of the tele-

portation using the criteria for the coherent state and

should use that for the squeezed state. For any real

and thus imperfect teleportation the retrieved quan-

tum state is not perfectly the same with the input

state, and the squeezing of the retrieved state would

be less than that of the original state. However, even

so, estimating the quality of the teleportation of a

squeezed state in terms of the squeezing measured by

the receiver and the criteria derived speci�cally for

the squeezed state teleportation should be more rea-

sonable and closer to the real situation than using that

obtained for the coherent state. In fact, for the tele-

portation, an unknown quantum one even does not

know that it is a coherent state or anything else before

it is retrieved, so the evaluating criteria only can be

selected after retrieved. Our calculations prove that

using a given EPR entanglement the �delity and its

classical limit of teleporting a squeezed state is smaller

than that teleporting a coherent state. In the view-

point of physics, the result is reasonable because the

quantum information included in the squeezed state is

more than that in the coherent state, thus the higher

nonlocal entanglement should be required for teleport-

ing the more quantum information. When one designs

a teleportation system and intends to teleport the

squeezed state, the present results may provide useful

reference for preparing an available EPR source. In

addition, we resolve the optimal classical gain of tele-

porting a squeezed state and point out that when a

squeezed vacuum state is teleported, the optimal gain

is dependent on the used EPR entanglement and not

equals to 1. Therefore in performing the teleportation

experiments the receiver should adjust the classical

gain of the system carefully to reach the best �delity

for each given EPR source.
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